Simulation metamodeling with dynamic Bayesian networks

نویسندگان

  • Jirka Poropudas
  • Kai Virtanen
چکیده

This paper presents a novel approach to simulation metamodeling using dynamic Bayesian networks (DBNs) in the context of discrete event simulation. A DBN is a probabilistic model that represents the joint distribution of a sequence of random variables and enables the efficient calculation of their marginal and conditional distributions. In this paper, the construction of a DBN based on simulation data and its utilization in simulation analyses are presented. The DBN metamodel allows the study of the time evolution of simulation by tracking the probability distribution of the simulation state over the duration of the simulation. This feature is unprecedented among existing simulation metamodels. The DBN metamodel also enables effective what-if analysis which reveals the conditional evolution of the simulation. In such an analysis, the simulation state at a given time is fixed and the probability distributions representing the state at other time instants are updated. Simulation parameters can be included in the DBN metamodel as external random variables. Then, the DBN offers a way to study the effects of parameter values and their uncertainty on the evolution of the simulation. The accuracy of the analyses allowed by DBNs is studied by constructing appropriate confidence intervals. These analyses could be conducted based on raw simulation data but the use of DBNs reduces the duration of repetitive analyses and is expedited by available Bayesian network software. The construction and analysis capabilities of DBN metamodels are illustrated with two example simulation studies. 2011 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian networks, influence diagrams, and games in simulation metamodeling

Aalto University, P.O. Box 11000, FI-00076 Aalto www.aalto.fi Author Jirka Poropudas Name of the doctoral dissertation Bayesian Networks, Influence Diagrams, and Games in Simulation Metamodeling Publisher Aalto University Unit School of Science, Department of Mathematics and Systems Analysis Series Aalto University publication series DOCTORAL DISSERTATIONS 76/2011 Field of research Systems and ...

متن کامل

An Introduction to Inference and Learning in Bayesian Networks

Bayesian networks (BNs) are modern tools for modeling phenomena in dynamic and static systems and are used in different subjects such as disease diagnosis, weather forecasting, decision making and clustering. A BN is a graphical-probabilistic model which represents causal relations among random variables and consists of a directed acyclic graph and a set of conditional probabilities. Structure...

متن کامل

A Bayesian Networks Approach to Reliability Analysis of a Launch Vehicle Liquid Propellant Engine

This paper presents an extension of Bayesian networks (BN) applied to reliability analysis of an open gas generator cycle Liquid propellant engine (OGLE) of launch vehicles. There are several methods for system reliability analysis such as RBD, FTA, FMEA, Markov Chains, and etc. But for complex systems such as LV, they are not all efficiently applicable due to failure dependencies between compo...

متن کامل

 Structure Learning in Bayesian Networks Using Asexual Reproduction Optimization

A new structure learning approach for Bayesian networks (BNs) based on asexual reproduction optimization (ARO) is proposed in this letter. ARO can be essentially considered as an evolutionary based algorithm that mathematically models the budding mechanism of asexual reproduction. In ARO, a parent produces a bud through a reproduction operator; thereafter the parent and its bud compete to survi...

متن کامل

Synchronization for Complex Dynamic Networks with State and Coupling Time-Delays

This paper is concerned with the problem of synchronization for complex dynamic networks with state and coupling time-delays. Therefore, larger class and more complicated complex dynamic networks can be considered for the synchronization problem. Based on the Lyapunov-Krasovskii functional, a delay-independent criterion is obtained and formulated in the form of linear matrix inequalities (LMIs)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • European Journal of Operational Research

دوره 214  شماره 

صفحات  -

تاریخ انتشار 2011